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ABSTRACT   

Hyperspectral imaging typically produces huge data volume that demands enormous computational resources in terms of 

storage, computation and transmission, particularly when real-time processing is desired. In this paper, we study a low-

complexity scheme for hyperspectral imaging completely bypassing high-complexity compression task. In this scheme, 

compressive hyperspectral data are acquired directly by a device similar to the single-pixel camera based on the principle 

of compressive sensing (CS). To decode the compressive data, we propose a flexible recovery strategy by taking 

advantage of the joint spatial-spectral correlation model of hyperspectral images. Moreover, a thorough investigation is 

analytically conducted on compressive hyperspectral data and we find that the compressive data still have strong spectral 

correlation. To make the recovery more accurate, an adaptive spectral band reordering algorithm is directly added to the 

compressive data before the reconstruction by making best use of spectral correlation.  The real hyperspectral images are 

tested to demonstrate the feasibility and efficiency of the proposed algorithm. Experimental results indicate that the 

proposed recover algorithm can speed up the reconstruction process with reliable recovery quality.   

Keywords: Hyperspectral images, compressive sensing, orthogonal matching pursuit, joint sparsity 

 

1. INTRODUCTION   

Hyperspectral imaging refers to imaging the electromagnetic (EM) properties reflected or emitted by a scene or an 

object, over possible hundreds of contiguous spectral bands. It is a crucial tool to identify and quantify distinct 

components consisting of the observed scene. Hyperspectral imaging has a wide range of applications such as mineral 

exploration, forest monitoring, military surveillance and tissue spectroscopy in medicine. The price to pay for such high 

spatial and spectral resolution is to handle huge data size. It is particularly difficult to process directly and to transmit 

hyperspectral data cubes in real time or near real time. Prior to storage or transmission, an additional compression step is 

conventionally taken place to compact the data volume as small as possible without much degrading image quality. 

Obviously, this oversampling followed massive dumpling acquisition process is wasteful for sensor resource or power 

consumption, especially for particular applications, where large detector arrays are too expensive or computational 

resource are limited. Compressive sensing or compressed sampling (CS) recently proposed by Candes
1
 and Donoho

2 
is a 

novel sampling theorem for data acquisition. The CS theorem states that a sparse or compressible signal can be 

recovered from highly incomplete sets of linear measurements (i.e. far fewer than the number dictated by 

Shannon/Nyquist theorem) by a specially designed nonlinear recovery algorithm. In CS, sampling is performed by 

directly computing inner products between a signal and a set of random sequences. That is to say, the CS encoder is very 

simple and energy efficient. The CS decoder is more complicated because a large scale convex optimization problem 

must be solved to recover the original signal from fewer samples. Shifting complexity from onboard encoder to offline 

decoder is necessary for severely resource deprived applications, such as aerospace remote sensing. Another potential 

advantage of CS imaging is that it can work easily in low light environment or at wavelength outside the visible light due 

to the use of only one or few photon detectors. Thus, more sensitive detectors can be used to enhance imaging quality. 

Plenty of potential applications of the CS theorem have been made for compressive imaging
3
, remote sensing

4
 and 

spectral imaging
5
. The prototype of single-pixel digital camera based on CS has been presented by Duarte, et al.

3
, which 

is different from the conventional cameras based on CCD (or CMOS). It uses a single photon detector to sequentially 

acquire random linear measurements and then use an optimization algorithm to recover the original signal from a small 

set of measurements. In [6], active illumination was added to the CS camera to extend its applications, such as pixel- 
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-level programmable gain imaging. Beside the visible spectrum, the single-pixel CS camera architecture has been used 

for imaging in the terahertz
7
, and the short-wave infrared

8
 spectrum. Ma

9
 demonstrated two possible CS systems for 

different applications in remote sensing to reduce the cost of data acquisition, which are single-pixel but multitime 

(SPMT) imaging and multipixel but single-time (MPST) imaging. The former carries out sequential imaging as the 

single-pixel camera does, and the latter captures random projections within a single exposure by using an optical phase 

mask that is placed on a lens. In both systems, an iterative curvelet thresholding algorithm was used for better recovery 

quality. To achieve compressive spectral imaging, two classes of imagers dubbed the coded aperture snapshot spectral 

imager (CASSI) based on the principle of CS have been developed, i.e. single disperser CASSI (SD-CASSI) systems
10

 

and dual disperser CASSI (DD-CASSI) systems
11

. August et al.
12

 proposed an efficient system for compressive 

hyperspectral imaging to reduce computational complexity by randomly separable encoding in both the spatial and the 

spectral domains. Li et al.
13

 proposed an efficient CS unmixing scheme for hyperspectral images. Other CS applications 

include MRI imaging
14

, ISAR imaging
15

, compressive motion tracking
16

 and wireless communications
17

, just to mention 

a few.   

For a specific CS imaging system, how to design an efficient reconstruction algorithm is an important problem. 

Generally, the faster we recover the signal, the lower reconstruction performance we get. There is a tradeoff between 

reconstruction speed and recovery performance for one algorithm. Recently, distributed compressive sensing (DCS) has 

been put forward by Baran, et al.
18

 to jointly recover statistically correlated signals, while CS encoding is individually 

applied to each signal. The DCS theory rests on a concept termed joint sparsity – the sparsity of the entire signal 

ensemble. There are three joint sparsity models (JSMs) presented in [18]: sparse common component with innovations 

(JSM1), common sparse supports (JSM2) and nonsparse common component with sparse innovations (JSM3). The DCS 

theory has been successfully applied to recover color images
19

 and video sequence
20

. Hyperspectral images are captured 

of the same scene over contiguous spectral bands. They have similar structural information and can be regarded as a joint 

sparse signal ensemble. The DCS theory can be easily applied to hyperspectral images. In [21], JSM1 was applied to 

hyperspectral image compression. 

In this paper, we study the reconstruction problem of the compressive hyperspectral imaging scheme with low 

imaging cost. In this scheme, compressive hyperspectral data are captured directly by a typical SPMT system. To 

efficiently decode the compressive data, we propose a flexible recovery strategy by taking advantage of prior knowledge 

that hyperspectral images have common sparse supports (JSM2) to reduce complexity. Secondly, a thorough 

investigation is originally carried out on the compressive hyperspectral data. To make the recovery more precise, an 

adaptive grouping algorithm with simple spectral band reordering algorithm is added to the compressive data before the 

reconstruction by making use of strong spectral correlation of the compressive hyperspectral data. 

This paper is organized as follows. Section 2 contains the background of this work, notations and definitions. 

Section 3 briefly describes the compressive hyperspectral imaging scheme and gives a thorough correlation analysis of 

compressive hyperspectral data. In Section 4, we describe the recovery algorithm we propose. Section 5 presents some 

experimental results based on the real hyperspectral images. Finally, Section 6 gives concluding remarks. 

2. BACKGROUND 

2.1 Notations and definitions 

We denote (column-) vectors and matrices by lowercase and uppercase boldface characters, respectively. The n -th 

column of a matrix A is n
A .The ( , )m n -th element of matrix A is ( , )m nA . The n -th element of a vector v  is ( )nv . The 

transpose of a matrix A is 
A . The notation 

0
|| ||v denotes the number of nonzero elements of a vector v . The notation 

1
|| ||v denotes the 

1
-norm of a vector v  and is defined as 

1
|| || | ( ) |

i
iv v . The notation 

2
|| ||v denotes the Euclidean 

norm of a vector v  and is defined as 
2

2|| || | ( ) |
i

iv v . The notation 2( , )x   denotes a Gaussian random 

variable x  with mean   and variance 2 .   

The notation C
A

denote the covariance matrix of A . The ( , )m n -th element of matrix C
A

is ( , )C m n
A

, which 

represents the covariance of columns m  and n  in A . The notation R
A

denote the correlation coefficient matrix of A . 

The ( , )m n -th element of matrix R
A

is ( , )R m n
A

, which represents the correlation coefficient of columns m  and n of A . 



 

 
 

 

 

 

The notation Ev  denotes the mathematical expectation of a variable v . Assume that v is an N -length observation 

vector of variable v . For simplicity, we use an unbiased estimate 
v
 to replace Ev , i.e. 

1

1
( )

N

n

n
N




 v
v .  

2.2 Compressive sensing 

The CS theorem is a novel sampling theorem introduced in [1]-[2]. It states that sparse or compressible signals can 

be reconstructed from far fewer linear measurements than Shannon/Nyquist theorem suggests. A signal 1Nx  is said 

sparse if it has a sparse representation in some domain N N , i.e. x= , 
0

|| || K  , K N , and for compressible 

signals, the transform coefficient vector   has only K  significant elements and the rest ( )N K elements are small. 

One can use a measurement matrix M N to acquire a smaller vector 1My , i.e. y x , K M N  . If the 

measurement matrix is incoherent with  , i.e.  satisfies a sufficient condition named restricted isometry property 

(RIP)
1
, the sparse coefficient vector   can be accurately recovered by solving a sparse-promoting convex optimization 

problem using at last 1M K   measurements. 

0
min || || . .s t   y                                                                   (1) 

Since the 
0

- norm minimization is an NP-hard problem, one can resort to an easier 
1
-norm minimization by 

linear programming 

1
min || || . .s t   y                                                                   (2) 

To accurately recover , the 
1
-norm minimization needs more measurements, i.e. ( log( / ))M O K N K . Many 

algorithms have been proposed to recover signal x  from its measurements y , e.g. linear programming (LP)
22

 and 

orthogonal matching pursuit (OMP) algorithm
23

. For a detailed overview on recovery algorithms, please refer to
24

. 

  3. COMPRESSIVE HYPERSPECTRAL IMAGING 

3.1 CS encoding for hyperspectral images  

Let 1[ ,..., ] p bb
N NN 

 X x x denote the matrix representing of a hyperspectral image cube, where 
1pNi 

x  is the 

vectorized version of an image at the i -th band, 
pN denotes the number of pixels and 

bN denotes the number of spectral 

bands. We may use specially designed measurement matrix for each spectral band. For convenience, we use the same 

measurement matrix pM N
 to randomly sample all the bands, where pM N is the number of samples for each band. 

The CS encoding for each hyperspectral image can be described as: 

  , {1,2,..., }i i

bi N y x                                                                (3) 

Where i
y denotes the compressive data vector of the i -th band.  

Let
1[ ,..., ]b bN M N

 Y y y denote the compressive hyperspectral data matrix. The CS encoding for 

hyperspectral images can be rewritten as:  

   Y X                                                                                    (4) 

3.2 Correlation analysis 

For matrices X and Y , define the correlation coefficient of columns (bands) i and j of the compressive hyperspectral 

data matrix Y : 

2 2 2 2

( , ) ( )
( , )

( , ) ( , ) [ ( ) ( ) ][ ( ) ( ) ]

i j i j

i i j j

C i j E E E
R i j

C i i C j j E E E E


 

 

Y
Y

Y Y

y y y y

y y y y
                                 (5) 

And define the correlation coefficient of columns i and j of the hyperspectral image matrix X : 

       
2 2 2 2

( , ) ( )
( , )

( , ) ( , ) [ ( ) ( ) ][ ( ) ( ) ]

i j i j

i i j j

C i j E E E
R i j

C i i C j j E E E E


 

 

X
X

X X

x x x x

x x x x
                                   (6) 



 

 
 

 

 

 

Without loss of generality, assume that the measurement matrix is defined as a Gaussian random sampling matrix, 

whose entries are independent and identically distributed (i.i.d) Gaussian random variables, i.e.
1

( , ) ~ (0, )m n
M

  , and 

set the squared column norm of   to 1, i.e. 2

1

| ( , ) | 1
M

m

m n


  . According to the law of large number
25

, if M is large 

enough, we know that 
1

1
( , ) [ ( , )]

M

m

m n E m n
M 

   =0 with overwhelming probability. Since 

1 1 1 1 1

1 1 1
( ) ( , ) ( ) ( )( ( , )) 0

p pN NM M M
i i i i

m m n n m

E m m n n n m n
M M M    

        y y x x  

and 

1 1 1 1

2

1 1

1 1
( ) ( ) ( ) ( ( , ) ( ))( ( , ) ( ))

1
( ) ( )( | ( , ) | ) ( )

p p

p

N NM M
i j i j i j

m m n n

N M
pi j i j

n m

E m m m n n m n n
M M

N
x n x n m n E

M M

   

 

   

  

   

 

y y y y x x

x x

 

Hence, Eq. (5) can be rewritten by 

  
2 2

( )
( , )

( ) ( )

i j

i j

E
R i j

E E


Y

x x

x x
                                                                     (7) 

 If all the bands i
x from the hyperspectral image matrix X  have zero means, i.e. 0, 1,...,i

pE i N x , compared 

with Eq. (5) and Eq. (7), we have
Y X( , ) ( , )R i j R i j . It means compressive hyperspectral data have the same spectral 

correlation as hyperspectral images have. The CS encoding does not destroy the spectral correlation structure at all. 

Otherwise, when 0iE x , we only consider the bands that have strong spectral correlations with each other. These bands 

can be regarded as a stationary process
26

. Assume that i
x  and j

x  are two bands from these bands, one 

has i jE E  x x , 2 2( ) ( )i jE E R x x , where  and R are constant numbers. By subtracting Eq. (6) from Eq. (7), we 

have 

             
2

( , ) ( , ) [1 ( , )]R i j R i j R i j
R


  

Y X X                                                              (8) 

Since 0 ( , ) 1R i j 
X

, and 0R  , thus 

( , ) ( , ) 0R i j R i j 
Y X

                                                                      (9) 

From Eq. (9), we come to a conclusion that compressive hyperspectral data have stronger or at least the same 

spectral correlation as hyperspectral images have. Some experiments are carried out to prove the validity of the above 

theoretical derivation about spectral correlation. The hyperspectral images for test are the sub-image sets of Cuprite 

scene 1 and Jasper Ridge scene 1 from AVIRIS (http://aviris.jpl.nasa.gov), with size 64×64 cut from the upper-left 

corner. Fig. 1 shows the correlation experimental results of compressive hyperspectral data and hyperspectral images. In 

our experiments, the identical Gaussian random measurement matrix is exploited to compressively sense all bands.  

  

http://aviris.jpl.nasa.gov/


 

 
 

 

 

 

(a)                                                                                       (b) 

Fig. 1 Correlations of compressive hyperspectral data and hyperspectral images. (a) ‘Cspec-cof1’ and ‘Cspat-cof1’ indicate the 

spectral and spatial correlation coefficients of compressive Cuprite scene 1, respectively; ‘spec-cof1’ and ‘spat-cof1’ denote the 

spectral and spatial correlation coefficients of Cuprite scene 1, respectively, and (b) ‘Cspec-cof2’ and ‘Cspat-cof2’ indicate the 

spectral and spatial correlation coefficients of compressive Jasper scene 1, respectively; ‘spec-cof2’ and ‘spat-cof12’ denote the 

spectral and spatial correlation coefficients of Jasper Ridge scene 1, respectively. 

From Fig. 1, one can see that compressive hyperspectral data have stronger spectral correlation but much lower 

spatial correlation. It is experimentally proved that the CS encoding does not affect the spectral correlation structure at 

all. The low spatial correlation of compressive data is decided by the inherent property of CS. The CS samples are noise-

like, as shown in Fig. 2. However, the noise-like characteristic has a useful advantage of error resilience. This is because 

each CS sample makes an identical contribution to reconstruction. That is to say the reconstruction performance is 

determined by the number of samples, not certain samples. Therefore, the CS encoding has a much strong robustness, 

very suitable for long distance transmission. 

     

Fig. 2 Comparison of compressive hyperspectral image and hyperspectral image. The left is a sub-image set from the 40-th band of 

Cuprite scene 1, with size 64×64 cut from the upper-left corner, and the right is the corresponding compressive image. 

4. PROPOSED RECOVERY ALGORITHM DESCRIPTION 

The reconstruction problem (Eq. (4)) of hyperspectral images can be termed a multiple measurement vectors (MMV) 

problem. How to efficiently solve Eq. (4) is the aim we seek. It is known that hyperspectral images are acquired from the 

same scene over continuous spectral bands. They have similar structure information and can be regarded as a jointly 

sparse ensemble. Recently, the DCS theory
18

 has been shown its efficacy on reconstructing jointly sparse signals
19, 20

. We 

know that the OMP algorithm
23

 is a representative sparse signal recovery algorithm and can achieve good performance 

with low complexity. It is iteratively to find out the significant coefficients and to record the corresponding locations of 

the signal. In this section, we extend the OMP algorithm to solve the MMV problem (Eq. (4)) of hyperspectral images by 

exploiting the joint sparsity model of JSM2 suggested in [18]. In JSM2, signals share the same sparse supports but have 

different nonzero coefficients. Moreover, from the correlation analysis in Section 3, we know that the compressive 

hyperspectral images have strong spectral correlations. In order to reduce complexity, an adaptive grouping based OMP 

algorithm is proposed to recover hyperspectral images by making best use of spectral correlation. In our algorithm, an 

adaptive spectral band reordering algorithm is first used to classify the spectral bands into several small groups before 

the reconstruction and secondly the nearly best reference band for each group is found out via a least square method. 

Lastly, in each group, a flexible recovery strategy is designed to reconstruct reference and non-reference bands, 

respectively. Generally, the high recovery performance requires strong spectral correlation and small group size. In this 

paper, the size of group is set to ten. 

4.1 Adaptive spectral band grouping algorithm 

The adaptive spectral band grouping algorithm used in this paper consists of three steps: 

Step 1: Calculate the spectral band correlation coefficient ( , 1)R i i 
Y

 for all any two adjacent bands of compressive 

hyperspectral data matrix Y . If ( , 1) 0.995R i i  
Y

, the two adjacent bands i and ( 1)i  belong to the same subset n ; 

otherwise, they belong to different subsets n and 1n  . 

Step 2: Calculate the number of bands in each subset. When there is only one band in a subset, the subset is taken as 

a group, for this band, the OMP algorithm is used to reconstruct the original hyperspectral image. Otherwise, if the 

number is smaller than ten, the whole subset is regarded as a group; else the subset is divided into groups consisting of 

ten adjacent bands. If the number of bands in the last group is smaller than ten, the last group is incorporated into the 

closest former group as a new last group. 



 

 
 

 

 

 

Step 3: Find the best reference band for each group. Denote the group n  by bM n
Z


 , where M  is the number of 

samples for each band, 
bn  is the number of bands, 10 20bn  . The reference band index   for group n can be found 

by solving the following optimization problem: 

1

arg max | ( , ) |
bn

i
j

R i j




  Z
                                                                      (10) 

Where {1,2,..., }bn , ( , )R i j
Z

represents the correlation coefficient of columns i and j of Z . The idea behind 

maximizing the sum of absolute correlation coefficients is that we wish to find that band that relate the most to all other 

bands of the same group.  

4.2 Adaptive grouping based OMP Algorithm  

Denote the reference band by r
y and r

x , and the non-reference band by p
y and p

x for compressive hyperspectral 

images and hyperspectral images, respectively. The recovery strategy of the adaptive grouping based OMP algorithm is 

described as follows. First, employ the OMP algorithm (Algorithm 1) to reconstruct each reference band r
x from the 

corresponding compressive data r
y . In this step, we find out the significant coefficients and record the sparse support of 

the reference band r
x . Secondly, construct a least square algorithm (Algorithm 2) by using the recorded sparse support of 

r
x to recover the non-reference band p

x  from p
y . Obviously, the proposed recovery strategy can speed up the 

reconstruction process but with little degradation in reconstruction performance.  

 

Algorithm 1: reconstruction of the reference band r
x  via the OMP algorithm 

Inputs: samples of the reference band 1r My , the sampling matrix pM N
  and the sparse 

basis p pN N
 . Let the dictionary 1{ ,..., } p

p

M N

N


  ω ω , each column vector 

iω  denote 

an atom. Sparsity level k . 

Outputs: reconstruction of the ideal sparse signal r , hence the reconstructed reference 

band r r x . Sparse support  of r : supp( )r  , i.e. set of the indices of locations that are 

nonzero coefficients. 

Initialization: iteration counter 0t  , the residual (0) rr y , the sparse solution (0) 0r  , (0)   , 

set of the indices of atoms that are allowed to be selected in the next iteration (0) {1,2,..., }pN  . 

For t from 1 to k  execute the following procedures: 

(1) Pick from the dictionary   the atom that best matches the residual: 

'

' ( 1)

'

( 1)

2

| , |
arg max

|| ||t

t

i
t

i
i

i






 


r ω

ω
 

(2) Renew the set ( ) ( 1) \t t

ti
    and ( ) ( 1)t t

ti
   . 

(3) Renew the weights for all the already selected atoms via the least square algorithm: 

( ) '

2

1

ˆ arg min || ( ) ||
t

t
t r

i

t

t




 
u

u y u ω  

(4) Renew the sparse solution: ( ) ( ) ( )ˆ( )r t t t   u , which means the significant coefficients of the 

indices in ( )t equal to ( )ˆ t
u . 

(5) Renew the residual: 
( ) '

1

( )
t

t
t r

i

t

t




 r y u ω . 

Algorithm 2: reconstruction of the non-reference band p
x  via the least square algorithm 

Inputs: samples of the non-reference band p
y , the dictionary 1{ ,..., }

pN  ω ω , the recorded 

sparse support ( )k for the reference band r
x . 

Outputs: reconstruction of the non-reference band p
x . 

Execute the following procedures: 

(1) Calculate the weights for all the already selected atoms via the least square method. Let 



 

 
 

 

 

 

1

( )( ) ( ,..., )
k

k

k i i    ω ω . Then '

1

( )
t

k

i k

t

t




 u ω u . According to linear algebra, 

T 1 T

2
ˆ arg min|| || ( )p p

k k k k

     
u

u y u y  

(2) Define the sparse solution ( ) ˆ( )p k   u , which means the significant coefficients of the 

indices in ( )k equal to û . 

(3) Calculate the reconstructed non-reference band p p x . 

 

5. EXPERIMENTAL RESULTS 

In order to test the performance of the proposed algorithm, some experiments are carried out. The hyperspectral 

images for test are the sub-image set of Cuprite scene 1 from AVIRIS (http://aviris.jpl.nasa.gov), with size 64×64 cut 

from the upper-left corner, for the purpose of reducing simulation time. The Gaussian random matrix is exploited as the 

measurement matrix for all bands. The popular (9,7) wavelet transform is used as the sparse basis. Currently, most CS 

performance is evaluated by adopting peak signal to noise ratio (PSNR) vs. measurement rate (MR), 

where MR / 100%M N  , M is the length of the measurement vector and N is the length of the original signal. For 

uniformity, we also use the measurement rate here.  

First, an experiment is employed to demonstrate that a CS encoder has a stronger robustness with lower encoding 

complexity. For the sake of fairness, the measurement rate is set to 100%, i.e. for a sub-image which is shown in Fig. 

3(a), we acquire the number of CS measurements equal to the original image size. As we know, a classical conventional 

encoder used to compress the acquired images is the wavelet transform-based encoder, such as that employed in 

JPEG2000
27

, which consist of two steps (e.g. wavelet transform and zero-tree coding). In the wavelet transform-based 

encoder, the low frequency wavelet coefficients contain most of the image information, and if one of these coefficients is 

destroyed, the recovered image would be intolerable since some of information is lost completely. Fig. 3(b) illustrates a 

case that one of the low frequency coefficients is lost, and the reconstructed PSNR is only 40.25dB. Contrarily, the CS 

encoder has a much stronger robustness since it delivers the information to all the CS samples (e.g. every CS 

measurement makes the same contribution to the reconstruction). The recovered images are not affected much when one 

or some CS samples are destroyed. Fig. 3(c) shows the case that one measurement is destroyed, and the reconstructed 

PSNR is 107.86dB, much higher than the former. Furthermore, Fig. 3(d) shows the case that a ten percent of 

measurements are destroyed, and the reconstructed PSNR is 104.71dB.  

    

(a)                                     (b)                                     (c)                                     (d) 

Fig. 3 Reconstructed images of the 40-th band of Cuprite scene 1. (a) is the original sub-image, (b) is the reconstructed image from 

wavelet coefficients with one low frequency coefficient destroyed, (c) is the reconstructed image from CS measurements with one 

measurement destroyed, and (d) is the reconstructed image from CS measurements with a ten percent of measurements destroyed. 

Next, we test the performance of the proposed adaptive spectral band reordering algorithm added to our recovery 

strategy, compared with that when there is no reordering, by using the OMP algorithm proposed in [31]. No reordering 

means that the 224 bands are divided into groups with ten adjacent bands, and then use the proposed recovery strategy to 

reconstruct images. Denote our algorithm by the adaptive grouping based OMP algorithm. In the proposed algorithm, the 

adaptive spectral band reordering algorithm described in Section 4 is employed to adaptively divide the 224 bands into 

groups. Denote the algorithm with no reordering by the fixed grouping based OMP algorithm. The reconstruction 

performances are shown in Table 1 in terms of PSNR and the reconstruction time on average. Algorithms are 

implemented in MATLAB version 7.11.0 on a workstation with Intel(R) Core(TM) i5 CPU and 4 GB memory. The 

reconstruction time is estimated using the etime function available in MATLAB. 

http://aviris.jpl.nasa.gov/


 

 
 

 

 

 

 

Table 1 Reconstruction performance of Cuprite scene 1 with the measurement rate MR=50% 

Algorithm 
The average PSNR per band 

(dB) 

The average reconstruction time 

per band (seconds) 

Fixed grouping + OMP 60.31 21.63 

Proposed adaptive grouping + OMP 62.37 31.28 

 
From Table 1, it is clear that our proposed adaptive grouping based OMP algorithm shows better PSNR 

performance than that of the fixed grouping based OMP algorithm when there is no reordering. A significant 

improvement of 2.06 dB in PSNR on average can be seen when MR=50%. The fixed grouping based OMP algorithm 

exploits a fixed grouping algorithm to simply divide the 224 bands into groups with adjacent bands. This fixed grouping 

algorithm has some shortcomings. It might make bands with high correlation belong to different groups, while bands 

with low correlation belong to the same group. These shortcomings decrease the whole reconstruction performance. In 

our algorithm, the adaptive spectral band grouping with the simple spectral band reordering algorithm can overcome this 

shortcoming and make sure the bands in the same group have high correlation. It is also seen from Table 1 that the 

proposed algorithm consumes little more time. This is because more groups may be produced by the proposed adaptive 

grouping algorithm than that of the fixed grouping algorithm, and there are some groups with only one band in our 

experiment. For instance, when the measurement rate MR=50%, our algorithm needs 31.28 seconds on average, while 

the fixed grouping based OMP algorithm needs 21.63 seconds.  

Lastly, we compare the reconstruction performance of the proposed adaptive grouping based OMP algorithm with 

the fixed grouping based OMP algorithm and the OMP algorithm without grouping under different measurement rates. 

The OMP algorithm without grouping means that the 224 bands are individually reconstructed using the OMP algorithm. 

In order to reduce complexity, both the fixed grouping based OMP algorithm and the adaptive grouping based OMP 

algorithm use a grouping algorithm. The experimental results of Cuprite scene 1 are shown in Fig. 4. From Fig. 4, it is 

clear that both the grouping based OMP algorithms perform much faster than the OMP algorithm without grouping. The 

price to pay for the faster speed is the decreasing performance. We can see that if one just uses the simpler fixed 

grouping algorithm, its performance is much worse than the OMP algorithm without grouping. However, when an 

adaptive grouping algorithm is added, like in our proposed algorithm, the reconstruction performance has great 

improvement and is only slight worse than the OMP algorithm without grouping. For example, when MR=40%, the 

performance of our algorithm is only 0.39 dB worse than that of the OMP algorithm without grouping, while there is a 

loss of 2.37 dB on the fixed grouping based OMP algorithm. It shows again that the fixed grouping algorithm is simple 

but not a good grouping algorithm for hyperspectral images. Moreover, when the measurement rate increases, the loss 

becomes larger. Thus, we can say that the adaptive grouping algorithm has a good effect on the proposed recovery 

strategy and our algorithm can greatly reduce computational complexity with reliable recovery quality. 

  
(a)                                             (b) 

Fig. 4 Comparison of reconstruction performance for Cuprite scene 1. (a) is the average PSNR per band, and (b) is the average 

reconstruction time per band. 

6. CONCLUSION 

The CS theorem is a novel sampling approach with much lower data acquisition cost, compared with the 

conventional oversampling followed by massive dumpling acquisition method. The CS imaging has a high potential in 



 

 
 

 

 

 

resource deprived applications, especially for aerospace remote sensing, such as hyperspectral imaging. In this paper, we 

propose a flexible reconstruction algorithm for a compressive hyperspectral imaging scheme by exploiting the spatial-

spectral correlation model of hyperspectral images. In addition, an adaptive grouping algorithm with simple spectral 

band reordering algorithm is added to make the recovery more accurate by making best use of strong spectral correlation 

of compressive hyperspectral data. Experimental results show that the proposed algorithm can provide reliable recovery 

quality with lower computational complexity.  
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